66 research outputs found

    Vocal production learning in mammals revisited

    Get PDF
    Vocal production learning, the ability to modify the structure of vocalizations as a result of hearing those of others, has been studied extensively in birds but less attention has been given to its occurrence in mammals. We summarize the available evidence for vocal learning in mammals from the last 25 years, updating earlier reviews on the subject. The clearest evidence comes from cetaceans, pinnipeds, elephants and bats where species have been found to copy artificial or human language sounds, or match acoustic models of different sound types. Vocal convergence, in which parameter adjustments within one sound type result in similarities between individuals, occurs in a wider range of mammalian orders with additional evidence from primates, mole-rats, goats and mice. Currently, the underlying mechanisms for convergence are unclear with vocal production learning but also usage learning or matching physiological states being possible explanations. For experimental studies, we highlight the importance of quantitative comparisons of seemingly learned sounds with vocal repertoires before learning started or with species repertoires to confirm novelty. Further studies on the mammalian orders presented here as well as others are needed to explore learning skills and limitations in greater detail.Publisher PDFPeer reviewe

    Cross-species parallels in babbling : animals and algorithms

    Get PDF
    A key feature of vocal ontogeny in a variety of taxa with extensive vocal repertoires is a developmental pattern in which vocal exploration is followed by a period of category formation that results in a mature species-specific repertoire. Vocal development preceding the adult repertoire is often called ‘babbling’, a term used to describe aspects of vocal development in species of vocal-learning birds, some marine mammals, some New World monkeys, some bats and humans. The paper summarizes the results of research on babbling in examples from five taxa and proposes a unifying definition facilitating their comparison. There are notable similarities across these species in the developmental pattern of vocalizations, suggesting that vocal production learning might require babbling. However, the current state of the literature is insufficient to confirm this suggestion. We suggest directions for future research to elucidate this issue, emphasizing the importance of (i) expanding the descriptive data and seeking species with complex mature repertoires where babbling may not occur or may occur only to a minimal extent; (ii) (quasi-)experimental research to tease apart possible mechanisms of acquisition and/or self-organizing development; and (iii) computational modelling as a methodology to test hypotheses about the origins and functions of babbling

    Peculiar Porous Aluminum Oxide Films Produced via Electrochemical Anodizing in Malonic Acid Solution with Arsenazo-I Additive

    Get PDF
    The influence of arsenazo-I additive on electrochemical anodizing of pure aluminum foil in malonic acid was studied. Aluminum dissolution increased with increasing arsenazo-I concentration. The addition of arsenazo-I also led to an increase in the volume expansion factor up to 2.3 due to the incorporation of organic compounds and an increased number of hydroxyl groups in the porous aluminum oxide film. At a current density of 15 mA·cm−2 and an arsenazo-I concentration 3.5 g· L−1, the carbon content in the anodic alumina of 49 at. % was achieved. An increase in the current density and concentration of arsenazo-I caused the formation of an arsenic-containing compound with the formula Na1,5Al2(OH)4,5(AsO4)3·7H2O in the porous aluminum oxide film phase. These film modifications cause a higher number of defects and, thus, increase the ionic conductivity, leading to a reduced electric field in galvanostatic anodizing tests. A self-adjusting growth mechanism, which leads to a higher degree of self-ordering in the arsenazo-free electrolyte, is not operative under the same conditions when arsenazo-I is added. Instead, a dielectric breakdown mechanism was observed, which caused the disordered porous aluminum oxide film structure

    DNA methylation predicts age and provides insight into exceptional longevity of bats

    Get PDF
    Exceptionally long-lived species, including many bats, rarely show overt signs of aging, making it difficult to determine why species differ in lifespan. Here, we use DNA methylation (DNAm) profiles from 712 known-age bats, representing 26 species, to identify epigenetic changes associated with age and longevity. We demonstrate that DNAm accurately predicts chronological age. Across species, longevity is negatively associated with the rate of DNAm change at age-associated sites. Furthermore, analysis of several bat genomes reveals that hypermethylated age- and longevity-associated sites are disproportionately located in promoter regions of key transcription factors (TF) and enriched for histone and chromatin features associated with transcriptional regulation. Predicted TF binding site motifs and enrichment analyses indicate that age-related methylation change is influenced by developmental processes, while longevity-related DNAm change is associated with innate immunity or tumorigenesis genes, suggesting that bat longevity results from augmented immune response and cancer suppression

    Do Zebra Finch Parents Fail to Recognise Their Own Offspring?

    Get PDF
    Individual recognition systems require the sender to be individually distinctive and the receiver to be able to perceive differences between individuals and react accordingly. Many studies have demonstrated that acoustic signals of almost any species contain individualized information. However, fewer studies have tested experimentally if those signals are used for individual recognition by potential receivers. While laboratory studies using zebra finches have shown that fledglings recognize their parents by their “distance call”, mutual recognition using the same call type has not been demonstrated yet. In a laboratory study with zebra finches, we first quantified between-individual acoustic variation in distance calls of fledglings. In a second step, we tested recognition of fledgling calls by parents using playback experiments. With a discriminant function analysis, we show that individuals are highly distinctive and most measured parameters show very high potential to encode for individuality. The response pattern of zebra finch parents shows that they do react to calls of fledglings, however they do not distinguish between own and unfamiliar offspring, despite individual distinctiveness. This finding is interesting in light of the observation of a high percentage of misdirected feedings in our communal breeding aviaries. Our results demonstrate the importance of adopting a receiver's perspective and suggest that variation in fledgling contact calls might not be used in individual recognition of offspring

    DNA methylation predicts age and provides insight into exceptional longevity of bats

    Get PDF
    This work was supported by a Paul G. Allen Frontiers Group grant to S.H., the University of Maryland, College of Computer, Mathematical and Natural Sciences to G.S.W., an Irish Research Council Consolidator Laureate Award to E.C.T., a UKRI Future Leaders Fellowship (MR/T021985/1) to S.C.V. and a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada to P.A.F. S.C.V. and P.D. were supported by a Max Planck Research Group awarded to S.C.V. by the Max Planck Gesellschaft, and S.C.V. and E.Z.L. were supported by a Human Frontiers Science Program Grant (RGP0058/2016) awarded to S.C.V. L.J.G. was supported by an NSERC PGS-D scholarship.Exceptionally long-lived species, including many bats, rarely show overt signs of aging, making it difficult to determine why species differ in lifespan. Here, we use DNA methylation (DNAm) profiles from 712 known-age bats, representing 26 species, to identify epigenetic changes associated with age and longevity. We demonstrate that DNAm accurately predicts chronological age. Across species, longevity is negatively associated with the rate of DNAm change at age-associated sites. Furthermore, analysis of several bat genomes reveals that hypermethylated age- and longevity-associated sites are disproportionately located in promoter regions of key transcription factors (TF) and enriched for histone and chromatin features associated with transcriptional regulation. Predicted TF binding site motifs and enrichment analyses indicate that age-related methylation change is influenced by developmental processes, while longevity-related DNAm change is associated with innate immunity or tumorigenesis genes, suggesting that bat longevity results from augmented immune response and cancer suppression.Publisher PDFPeer reviewe

    Sexually Selected Infanticide in a Polygynous Bat

    Get PDF
    Background: Adult individuals of many species kill unrelated conspecific infants for several adaptive reasons ranging from predation or resource competition to the prevention of misdirected parental care. Moreover, infanticide can increase the reproductive success of the aggressor by killing the offspring of competitors and thereafter mating with the victimized females. This sexually selected infanticide predominantly occurs in polygynous species, with convincing evidence for primates, carnivores, equids, and rodents. Evidence for bats was predicted but lacking. Methodology/Principal Findings: Here we report the first case, to our knowledge, of sexually selected infanticide in a bat, the polygynous white-throated round-eared bat, Lophostoma silvicolum. Behavioral studies in a free-living population revealed that an adult male repeatedly attacked and injured the pups of two females belonging to his harem, ultimately causing the death of one pup. The infanticidal male subsequently mated with the mother of the victimized pup and this copulation occurred earlier than any other in his harem. Conclusions/Significance: Our findings indicate that sexually selected infanticide is more widespread than previously thought, adding bats as a new taxon performing this strategy. Future work on other bats, especially polygynous species in the tropics, has great potential to investigate the selective pressures influencing the evolution of sexually selecte
    corecore